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I. INTRODUCTION

This semester project is adapted from a proposed master
project called STReAKS. It inserts itself in the objective of
determining the physical properties of the space debris popula-
tion. Synthetic streaks, integrated in astronomical images, can
be used to train and test streak detection algorithms. The goals
for this project have changed over the course of the semester,
but turn out to be the following:

• Understanding of the FITS file format, the representation
of astronomical images and the physical propreties of the
observation stored in the metadata, rendering of FITS
images.

• Elaboration of a physical model for the effect of atmo-
spherical scintillation on observation.

• Creation of a code pipeline to insert a synthetic streak
in a FITS image, whose properties are consistent with
the physical properties of the observation. The langage is
python, using the astropy.io package to open FITS files.

The code pipeline can be found in the EPFL Space Center
Github.

II. FITS FORMAT AND OBSERVATION METADATA

Using a FITS image from an observation from ESO and the
documentation of OmegaCAM as source material, I made a
number of assumptions for the final code pipeline. They are
about the conventions used for the creation of the FITS files.
I assumed the FITS file to be composed of a primary HDU of
index 0, and then of images indexed from 1, whose data are
2D arrays of uint16. There are 32 of those images, ordered
in the OmegaCam layout [1]. Using the ordering, naming
the horizonzal axis x and vertical y and the (y,x) sorting of
elements in the data array, I deduced the origin of the data
array to be at the lower right (in order for visible structures to
be continuous in-between ordered individual images, see Fig.
1). Useful header cards in the primary HDU are the exposure
time, the seeing FWHM at start and end of the exposition
(more in Sec. III), windspeed at the telescope and the filter

name. An useful header card in the image HDU is the pixel
to arcsec conversion. A rendering of an image can be seen in
Fig. 2.

Fig. 1. Rendering of the 32 images in the ESO observation FITS file, rendered
using the ZscaleInterval from astropy.io.

III. PHYSICAL MODEL FOR SCINTILLATION

A. Moffat distribution for a PSF

Seen from a telescope, a star does not look like a point
source, but is modelized as a Moffat distribution, with proba-
bility density function [2]

f(x, y;α, β) =
β − 1

πα2

[
1 +

(
x2 + y2

α2

)]−β

, (1)

where α and β are parameters that basically change how wide
and how steep the distribution is1.

Atmospherical scintillation is a phenomenon that impacts
observation. It can be seen by eye when watching a small
light source in the distance at night, the light seems to flicker.
For an astronomical image with a long exposure time, taken
from the ground, this effect will turn a certain distribution,

1The astropy convention uses γ instead of α and α instead of β.

https://github.com/EPFL-Space-Center/odli/tree/main/odli/pipeline/scripts/draw_streak_to_fits.py
https://github.com/EPFL-Space-Center/odli/tree/main/odli/pipeline/scripts/draw_streak_to_fits.py


Fig. 2. Rendering of an image in the FITS file using the ZscaleInterval from
astropy.io. Index image number 25 from Fig. 1. The origin is at the lower
right. There are two visible streaks on the image.

like the Moffat distribution, into a Gaussian distribution over
time. Such an image uses stars as fixed points for the image,
and thus the Gaussian distribution seen from those images is
used to extract a parameter characterizing the observation, that
is the ”seeing FWHM” (where FWHM stands for full width
at half maximum) of this Gaussian. To have an idea of what
this quantity represents, it can be pictured for a 1D distri-
bution as the distance on the x-axis between the two points
where the height of the distribution is half of its maximal
value (this quantity only makes sense for a distribution that
monotoneously decreases away from its maximal value). In
the case of a Gaussian distribution, it is related to the standard
deviation σ by the relation [3]

FWHM = 2
√
2 ln 2σ. (2)

B. Langevin dynamics

In order to model a behaviour for the scintillation, thus the
time evolution of an observed point source, it is necessary that
the position histogram of this time evolution be distributed like
a Gaussian. The path a scintillating point source takes appears
to be random, except that it stays around its ”real” position.
I have therefore adapted Langevin dynamics as a model for
the observation scintillation. The Langevin dynamics, and its
resulting properties, were seen in the Biophysics class [4]. The
Langevin dynamics in 1D is the evolution of the position x(t)
in time, given by the differential equation

dx

dt
= ∂xV (x) + η(t), (3)

where ∂x represents the partial derivative in x (could be
total derivative but this way allows for higher dimension
generalization), V (x) is a potential term and η(t) : R → R is
the ”noise” term, a random variable that has properties

⟨η(t)⟩ = 0 ⟨η(t)η(t′)⟩ = 2Dδ(t− t′), (4)

where D [m2/s] is the diffusion coefficient, and δ(x) the Dirac
delta, with δ(x ̸= 0) = 0 and

∫
R δ(x)dx = 1. This means

η(t) is a normally distributed random variable of expectancy
0, no correlation over time, and variance 2D. For Langevin
dynamics with t → ∞, the distribution of the position of x(t)
becomes proportional to

exp
−V (x)

D
. (5)

C. Langevin dynamics for Gaussian seeing distribution

Therefore, for a certain potential V (x) that allows the
distribution position in time to be Gaussian, and assuming
the behaviour of scintillation to be a random walk within a
potential well, Langevin dynamics can be such a model.

To adapt Eq. 5 to a Gaussian, we need to use a harmonic
potential well for V (x)

exp
−V (x)

D
≡ exp

−x2

2σ2
, (6)

hence
V (x) = D

x2

2σ2
. (7)

Therefore, σ and D become parameters of the model. There
will be need later on to link D to a physical parameter. The
2D extention of those equations is simply

dx⃗

dt
= −∇⃗V (x⃗) + η⃗(t), (8)

with a diagonal constant covariance matrix σ, the notation
stays the same.

A discrete and finite-time simulation of this process is
represented in Fig. 3, with method described in Sec. IV.

Fig. 3. Simulation of the time evolution of Langevin dynamics inside a two-
dimensional harmonic potential well, with given parameters in the figure. A
slice of the position histogram around the y-axis resembles very closely to a
Gaussian (unnormalized).



IV. PYTHON IMPLEMENTATION OF THE MODEL

A. Integration process

To implement the time evolution of x(t) in Python, there is
need to discretize the process over time steps dt. The gaussian
random variable thus takes as its properties〈

⃗η(t)
〉
= 0⃗,

〈
⃗η(t) ⃗η(t′)

〉
=

2D

dt
δt,t′ , (9)

with δα,β = 0 ∀α ̸= β and δα,α = 1 the Kronecker delta. For
defining a normally distributed random variable in Python in
two dimensions with a variance 2D, one can simply generate
a one-dimensional normal distribution, taken from the package
numpy, of variance D in both dimensions.

To solve the differential equation, Euler integration would
be straightforward

dx⃗ =
(
−∇⃗V (x) + ⃗η(t)

)
dt (10)

but leads usually to more instabilities than fourth order Runge-
Kutta over the same time step. The RK4 implementation looks
like this over the x axis

xn+1 = xn +
dt

6
(k1 + 2k2 + 2k3 + k4)
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x(x) + ηx(t)
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dt

2
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2
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(
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dt

2
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k2
2

)
k4 = f(tn + dt, xn + dtk3),

and similarly over the y axis. For evaluation of the ”noise”
term η over ”half time-steps” like seen in k2 and k3, one
needs simply use dt/2 instead of dt in the normal random
variable.

B. Behaviour

This integration process answers a simple quality check,
scale consistency of its behaviour. Aspects of its general
behaviour are its stability and its exploration of the space.
Instability is characterized by very fast divergence, as in Fig.
4, and tends to happen for greater dt and greater D. Instability
will be detected by checking whether a value is greater than
100 times σ. This proves sufficient in practice as divergence
happens very fast and breaks through that threshold in only a
couple of steps.

Exploration of the space can rather intuitively be explained
as the tendency of the simulation to be able to walk around
enough for its position histogram to be more or less gaussian.
If it doesn’t have enough time to explore, or if the diffusion
coefficient is too small for the given time, the simulation might
not explore the space at its disposal ”enough” and its variance
will not be consistent with the expected parameters.

Fig. 4. Representation of a simulation for the Euler and RK4 integrators for
a certain set of parameters over the x axis only. RK4 stays stable whereas
Euler diverges, for the same run of random variables. For RK4, the variance
over the x and y dimensions are greater than the value of 2.0 (std2/2), which
hints to unwanted behaviour, even though stable. The meaning of ATSS and
threshold will be explained later on.

Fig. 5. Representation of a simulation for the Euler and RK4 integrators
for a certain set of parameters over the x axis only. For both integrators,
the variance over the x and y dimensions are smaller than the value of 2.0
(std2/2), meaning it could not explore the space at its disposal enough. The
meaning of ATSS and threshold will be explained later on.

C. D and scintillation timescale

The forementioned scale consistency means that the simula-
tion should not be able to distinguish between different input
parameters as long as they follow a certain transformation.
The behaviour of the simulation is its stability (whether it
diverges or not) and filling of the space (whether the variance
of the simulation is around the value expected from the
input). In general, for different runs with the same parameters,
the behaviour stays the same. And it does too when the
relationships ttot/dt and ttot · D are conserved. The first
relationship is the number of steps done by the simulation (no
unit), and the second one is the capacity of the walk to diffuse
[m2]. Indeed, the physical unit of D is [m2/s], multiplying it
by the total time of the simulation preserves the units.

All the variables in the simulation process have a physical
equivalent in an astronomical image, in a real streak, except for
D. This parameter was introduced in the template Langevin
dynamics, as a link between the variance of the ”noise” and



the steepness of the resulting histogram. There is however
another characteristic in a streak that can be matched to the
diffusion coefficent D, that was called ”scintillation timescale”
in a paper: ”In some cases, however, the length scale of the
wobbles can be used to estimate the angular velocity of the
streak. For example, we expect that the wobble timescale will
be of the order of the scintillation timescale (e.g., the telescope
diameter divided by the wind speed).” [5].

Fig. 6. The quantity called ”wobble lengthscale” seems to be the length of
the greatest visible oscillation cycle. [5]

As the ”scintillation timescale” can be determined in an
image using the assumption that it is the telescope diameter
divided by the wind speed, it can be used to determine the
according value of D needed for a simulation (if there is
a correlation between the two, which there is). As the link
between scintillation timescale and D can only be determined
in the other way, that is running simulations with a different D,
measuring the scintillation timescales, and choosing the value
of D whose simulation gave a scintillation timescale closest to
the target value. Now arises the question on how to measure
a scintillation timescale for a given simulated streak. For both
methods presented below, the analysis is done only on one
axis of the two-dimensional motion, assumed equivalent to
any radial projection by symmetry. It is also assumed that the
behaviour of the axial projection is sufficient to represent the
oscillation periods, in the sense that the perpendicular motion
cancels out in average.

One approach can be to do a Fast Fourier Transform (FFT)
of the streak. The position of the highest peak in Fourier
space would correspond to the main oscillation frequency, thus
period, thus oscillation timescale. This analysis however, prob-
ably due to the extremely noisy behaviour of the simulation,
proves to be extremely inconsistent. Different simulations with
the same parameters give way to main frequencies with orders
of magnitude of difference. This method also often seems to

produce results that are way off the oscillation timescale one
would deduce by eye.

Fig. 7. Langevin dynamics of parameters in the figure. The highest peak in
Fourier space from Fig. 7 would correspond to a main period of 3333.667 on
the x-axis of this graph, meaning 3 main periods in this whole figure.

Fig. 8. FFT of the motion represented in Fig. 7. In-between runs of the
same parameters, many peaks compete to be the highest, sometimes slightly,
corresponding to sometimes very different frequencies.

D. Estimation process for D

The second method, that I implemented in the final pipeline,
was to extract a value that I called ATSS (average time on same
side). To extract it, compute all times where the simulation
stays in the positive (or negative) values before taking a neg-
ative (or positive) value, and take the average of those times.
Twice that value would be the estimation for scintillation
timescale. However, it appears that due to the very noisy
nature of the simulations, this resulting value becomes way
smaller than expected. Adding a threshold that the simulation
must pass before the ”crossing” is acknowledged can make it
less susceptible to be perturbated by very small oscillations.
The threshold I chose is σ/3, which proved a good match
for various simulations between the estimated value - that
was consistent - and by-eye approximation. This means if the
simulation is in the negative values, the crossing will not be



counted until it reaches at least σ/3, and −σ/3 in the positive
case.

The forementioned correlation between D and ATSS holds
most of the time: for other parameters the same, an increase
in D decreases ATSS and vice-versa. The estimation process
for D, for a given scintillation timescale, is as follows

• Start with a certain D, and a certain dt. For any run,
if it diverges, rerun it with a smaller dt (dt/2 in my
implementation) until it converges. Store (D,ATSS), as
well as the dt value used.

• If the smallest stored ATSS is greater than the target
value, rerun with greater value of D as the associated
D (10·D in my implementation). And similarly if the
greatest stored ATSS is smaller than the target value.
Special case to be treated first, if all ATSS are infinity,
run with greater D as the greatest D.

• If the ATSS value of a simulation falls between two stored
ATSS values, do a simulation with D the mean of the two
associated D values.

• Stop after a fixed number of steps, output the D value
that has an ATSS the closest to the target value. Also
output the used dt.

This way, for an input scintillation timescale (twice the
value of associated ATSS), there is an estimation of D and
a value of dt that makes the simulation stable.

E. Pipeline inputs

The required inputs for our streak creation pipeline are its
brightness [magnitude], apparent velocity [rad/s], starting co-
ordinates [pixels,pixels] and angle [rad] in the trigonometrical
convention, as well as values for α and β. The streak will be
drawn in a total number of steps ttot/dt+1, each step printing
on the image a spot in the shape of a Moffat distribution. To
determine where the center of the Moffat is at a certain step, it
is the addition of a linear term and the Langevin dynamics. The
first term is given by the time sampling of a line, from starting
point and given angle and length deduced from the apparent
velocity. The second one is simply the value of the Langevin
dynamics at that time step. Adding those two ”vectors” gives
the position of the center at a certain time step. There only
remains to determine what the intensity of those Moffat spots
should be.

To determine the number of pixel values to add to each
Moffat spot, one needs to find a way to convert the input
brightness. The number of electron counts for a value of 1
in a pixel is 2.5. The conversion from apparent magnitude to
electron flux N∗ is [6]

N∗ = N2010
−mapp−20/2.5, (11)

with N20 the flux of a mag20 source, and mapp the apparent
magnitude. To determine N20, the OmegaCAM Exposure
Time Calculator [7] is used for a time of 1 second, given
a certain filter, with the assumption that the airmass is 1.5. A
table of values is then stored in order to output N20 for an
input filter (from ESO), found in the FITS metadata. This way,
one can find the values that each Moffat dots add to the image.

To vastly increase efficiency, the Moffat dots are cropped in
squares. Only the values greater than 1/(2 · (ttot/dt + 1))
are kept (threshold of significance, if all spots would add that
value then it would result in 0.5), the rest is cropped out.

Values for α and β are left as parameters, for real streaks
they can be extracted if one needs to create a synthetic streak
with those same parameters.

The maximal value of dt used for a streak drawing is
such that in average, there are precision Moffat centers for a
distance of one pixel in the image, with precision defaulting
to 50. In the end, dt can be smaller if the simulation with the
original dt diverges.

F. Running the code

The main different assumptions that were made for the
synthetic streak drawing pipeline are

• Constant arcsec to pixel conversion, that the conversion
matrix is a constant times Id2.

• The seeing FWHM used is constant in the drawing, and
the mean of the extracted values in the metadata (start
FWHM and end FWHM).

• Stability of simulated Langevin dynamics is only depen-
dent on its input values and not on chance.

This whole process gives a code pipeline, that for a couple
of input parameters allows to draw a synthetic streak in a FITS
image directly in the file. Fig. 9 and 10 show a synthetic streak
inserted in the same FITS image than the previous Fig. 2, with
the streak creation parameters detailes in legend of Fig. 9.

Looking at Fig. 1 and estimating by eye the parameters of
the streak spanning through images 27, 26, 25 and 12 (most
notably its length), I use those parameters to create a synthetic
streak close to it that should in principle look similar, in Fig.
11. The artificial streak however seems to wobble more than
the real one.

V. DISCUSSION

This streak drawing pipeline is functional to modify FITS
images, extracting meaningful data and using it to draw an
artificial streak, all that in reasonable time (on my 2.3 GHz
CPU it took around 1mn for the first example, half of the
time being the simulations made to find the better value of
D. For an example with wider drawing, the runtime can
go quite higher, around 10mn for the second example). The
numerical simulation of the Langevin dynamics turns out to be
stable, having sufficient precision and still being computed in a
reasonable number of steps. The by-eye comparaison between
an artificial streak and a real one that should have the same
characteristics shows that the process can clearly be improved.
The most crude approximation made in the process is the
definition and estimation of the scintillation timescale. The
way to extract this information from a streak as well as the
estimation process from the observation parameters (telescope
diameter divided by windspeed) can clearly be improved.

Concerning the code aspect, there are certain improvements
that could easily be made to the pipeline:



Fig. 9. Artificial streak generated on the same FITS image than Fig. 2 (the
bottom streak is the artificial) with input parameters (as they are named in
the code) brightness=15, appVel=1.4e-5, start=(650,750), angle=np.pi·3/17,
alpha=3, beta=2, apertureDiam=2.6, drawingPrecision=20. The seeingStd (ob-
tained through seeing FWHM) is 1.452, exposure time 75s, thus the used
values for the simulation were around D=7.9, dt = 0.003 corresponding to
ATSS=0.424, for target ATSS being 0.429.

• Betterment of the integration instability criterion. An
idea would be to run for 100 (for example) additional
”invisible” steps and check if the threshold is exceeded
at that stage.

• If not implementing the previous point, simply checking
in the final drawing function if there was a divergence and
redo the drawing process with higher precision if it was
the case. Currently, this is only done to find parameters
that should lead to a stable drawing, but there is no check
on the actual final drawing.

• A simple addition would be to accept a modulation in
intensity over time, in the form of a function (or an array
as long as the number of steps), that for a certain time
give a modulation of the intensity (between 0 and 1), that
could be used to simulate the evolution of a rotating body.

• Instead of using a constant seeing FHWM that is the mean
of start and end of the observation, there could be a liner
evolution of FHWM between start and end, which should
be a better approximation. The stability tests should be
done with the smallest FWHM value.

Fig. 10. Zoom on the artificial streak from Fig. 9.

Fig. 11. The parameters of the artificial horizontal streak (the bottom one) are
brightness=11, appVel=7e-5, start=(1000,3700), angle=np.pi, alpha=4, beta=2,
apertureDiam=2.6, drawingPrecision=10. The seeingStd (obtained through
seeing FWHM) is 1.452, exposure time 75s, thus the used values for the
simulation were around D=7.19, dt = 0.001 corresponding to ATSS=0.427,
for target ATSS being 0.429.

An actual follow-up of this project, with the time evolution
of intensity option added, would be to actually analyze syn-
thetic streaks to compare them to real streak images, and find
out how good the Langevin dynamics process is to simulate
scintillation.
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